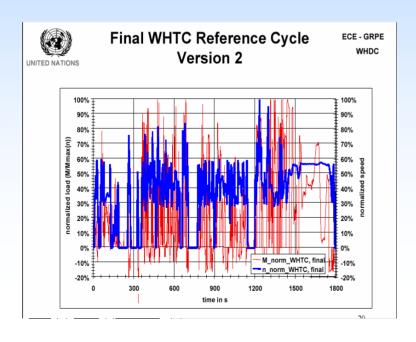
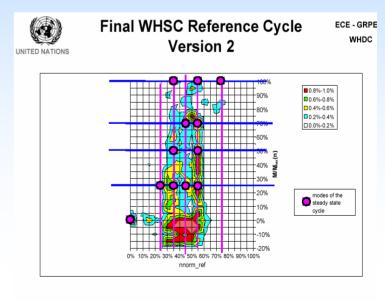
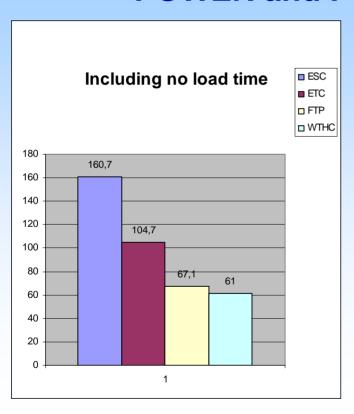
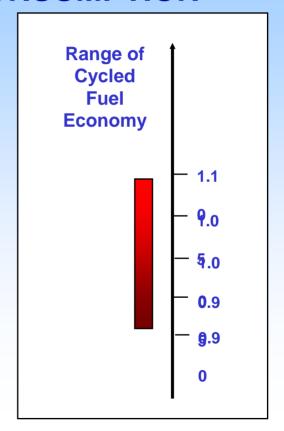

A EUROPEAN PERSPECTIVE OF EURO 5/U.S. 07 HEAVY-DUTY ENGINE TECHNOLOGIES AND THEIR RELATED CONSEQUENCES

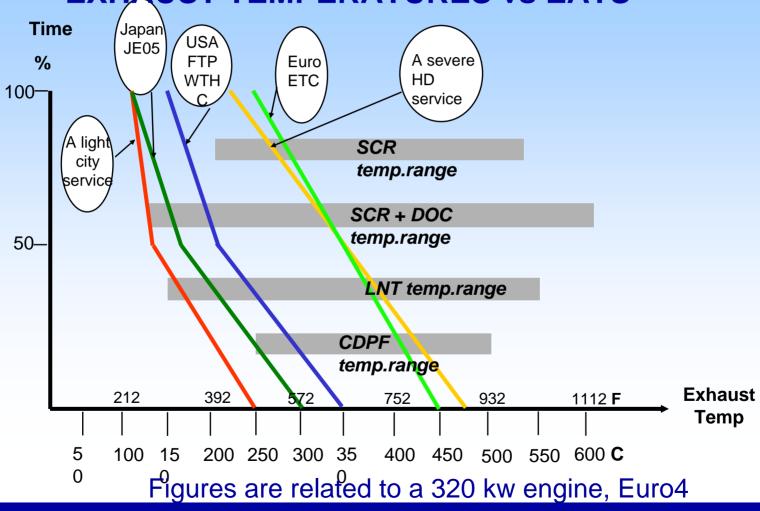

OUTLINE

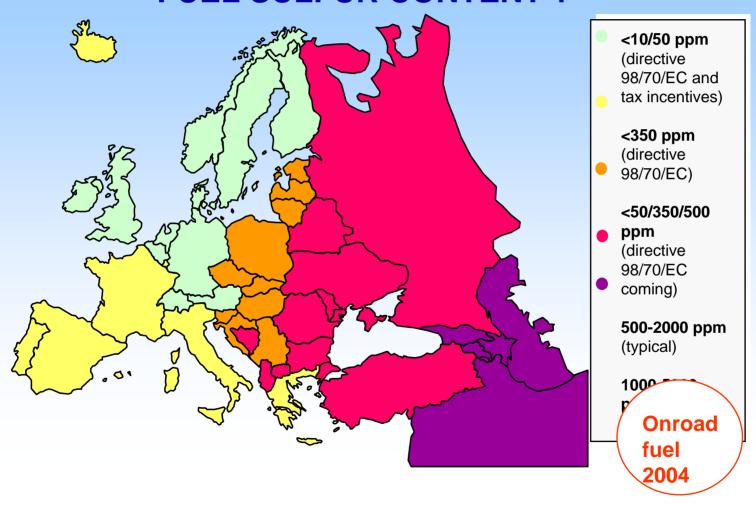

- Regulations Background
 - ✓ Emissions Control Technologies
 - □ Selection
 - **□**Comparison
 - ✓ UREA/AD BLUE in Europe
 - ✓ European Regulations vs SCR
 - ✓ Perspective


REGULATIONS BACKGROUND 2 EMISSIONS TESTS PROCEDURES 1


- Convergence, but a large panel of tests, Including steady state, transcient cycles and NTE limits
- Lack of harmonization
- Attempt to harmonize

REGULATIONS BACKGROUND 3 EMISSIONS TESTS PROCEDURES 2 POWER and FUEL CONSUMPTION




Figures are related to a 320 kw/429 hp - 2000 mN/1475 lb ft engine

rating

REGULATIONS BACKGROUND 4 EMISSIONS TESTS PROCEDURES 3 EXHAUST TEMPERATURES vs EATS

REGULATIONS BACKGROUND 5 FUEL SULFUR CONTENT 1

EMISSIONS CONTROL 1 SELECTION of TECHNOLOGIES 1 DILEMMA

Low NOx

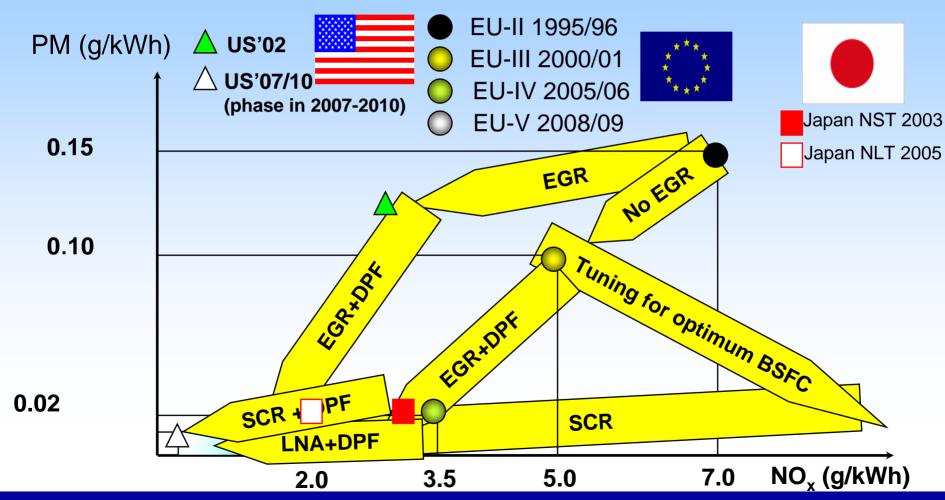
Low Part

High Fuel Economy

Low Initial Cost

Low Maintenance Cost

High Durability


High Return on Investment

Regulations demand

Customer demand

OEM demand

EMISSIONS CONTROL 2 SELECTION of TECHNOLOGIES 2 MAIN ROUTES

EMISSIONS CONTROL 3 SELECTION of TECHNOLOGIES 3

- ☐ The Volvo group has selected:
 - ✓ SCR to control NOx in Europe
 - ✓ EGR to control NOx in North America
 - ✓ DPF to control particulates on both sides of the Atlantic

EMISSIONS CONTROL 4 TECHNOLOGIES COMPARISON 1 ASSUMPTIONS

- Comparison, as fair as possible, is proposed:
 - ✓ Euro 5, for the time being (NOx 2 gr/kwh Part 0.02 gr/kwh) is less severe than U.S. 7
 - ✓ A Euro 5+, similar to US 07, is defined for the sake of comparison
 - ✓ A 11-I engine, 410 bhp/306 kW rated, is selected as reference

EMISSIONS CONTROL 5 TECHNOLOGIES COMPARISON 2 OVERALL

EGR SCR

Engine and Chassis Fuel Economy

Bmep

Heat Rejection and Chassis Cooling

Weight

Engine Durability

Global System Cost

Maintenance Cost

Service Cost

Development Cost

EMISSIONS CONTROL 6 TECHNOLOGIES COMPARISON 3 SYSTEMS ECONOMICS

SCR EGR

Base Engine Cost	1.000 1.055
------------------	-------------

NOx System Cost 0.155 0.060

NOx System Chassis Overcost 0.009 0.015

DPF System 0.140 0.140

DPF System Chassis Overcost 0.007 0.007

1.311 1.277

EMISSIONS CONTROL 7 TECHNOLOGIES COMPARISON 4 FUEL ECONOMY 1

ESC comparison of US 07/E 5+ engine (410bhp/306 kW) raw figures (UREA consumption excluded)

SCR 0.94

EGR 1.01

EMISSIONS CONTROL 8 TECHNOLOGIES COMPARISON 5 FUEL ECONOMY 2

Net figures (UREA consumption included)

UREA prices assumed to be equal to:

100% of fuel one in North America

50% of fuel one in Europe

Engine and Urea effect	SCR	EU	0,97	SCR	NA	1,00
	EGR	EU	1,01	EGR	NA	1,01
Chassis and cooling effect	SCR	EU	0,97	SCR	NA	1,00
	EGR	EU	1,02	EGR	NA	1,02

EMISSIONS CONTROL 9 TECHNOLOGIES COMPARISON 6 CO 2 ASPECT

□ 1 kg UREA needs 1 kg CO 2 to be PRODUCED A 6 % UREA consumption is assumed.

on a steady-state cycle basis it comes a CO 2 rejection of :

SCR 628 gr/kwh EGR 668 gr/kwh

EMISSIONS CONTROL 10 TECHNOLOGIES COMPARISON 7 ECONOMICS 1 ANNUAL OPERATING COST

Service: mix of intensive and economic N.A. HD long haul, medium

severity

Costs: fuel and urea (\$ 2/US gal)

engine maintenance & service

chassis maintenance & service

ESTIMATION of a mean A.O.C INCREASE (vs 04):

EGR \$ 500

SCR \$ 50

EMISSIONS CONTROL 11 TECHNOLOGIES COMPARISON 8 ECONOMICS 2 ANNUAL VALUE IMPACT for CUSTOMER

Service and Maintenance cost impact

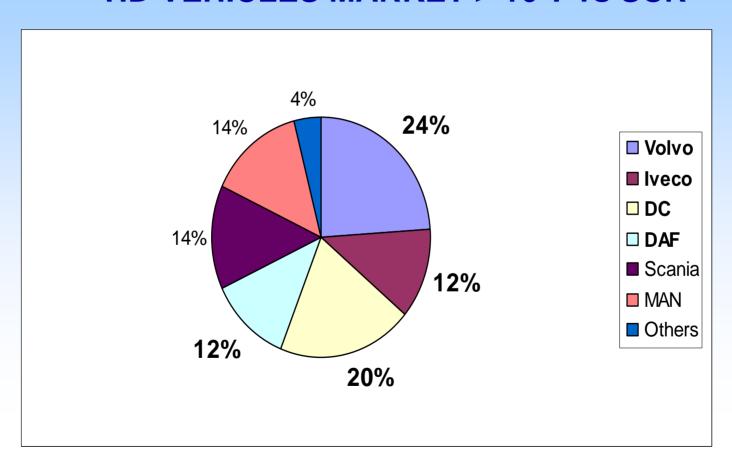
Weight impact

Product Cost impact

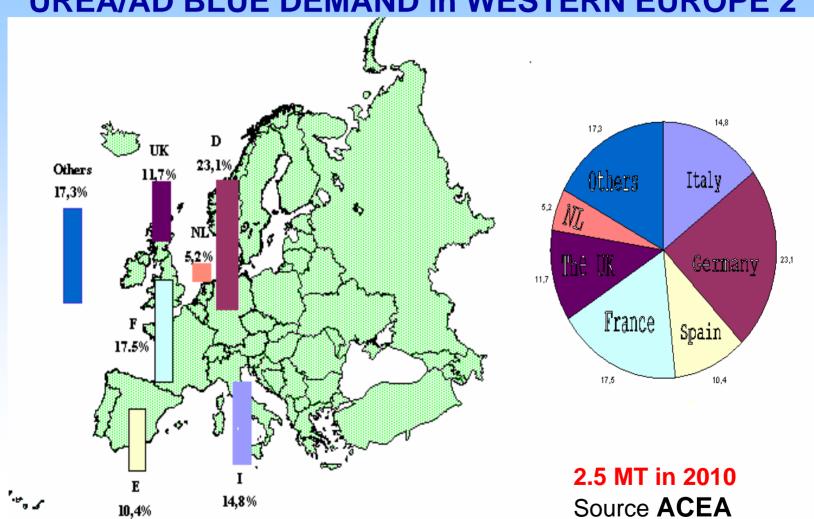
Fuel cost

Residual Value impact

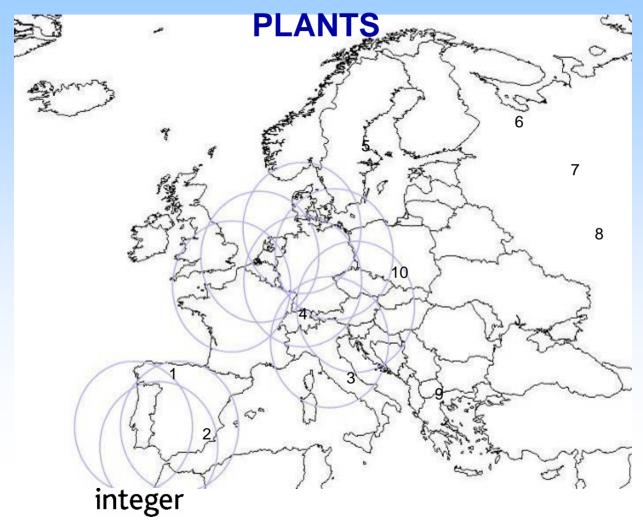
Project Development cost impact


N.A., mix of economic & intensive H.D long haul, medium severity service

E ESTIMATION of a mean A.V.I., DETRIMENTAL (vs 04) by :


EGR \$ 2000

SCR \$ 1500


UREA/AD BLUE in EUROPE 1 UREA/AD BLUE DEMAND in WESTERN EUROPE 1 HD VEHICLES MARKET > 16 T vs SCR

UREA/AD BLUE in EUROPE 2 UREA/AD BLUE DEMAND in WESTERN EUROPE 2

UREA/AD BLUE in EUROPE 3 300 m/500 km DISTRIBUTION RADIUS for UREA

Source

UREA/AD BLUE in EUROPE 4 AD BLUE DISTRIBUTION 1

DISTRIBUTION TECHNOLOGIES and STRATEGIES are DEFINED or

CLOSED to BE

(indoor, outdoor conditions, cans, containers, pumps, nozzles,

bulk direct service to big fleets,...)

PRICING RANGE from 0,3 to 0,7 €/I

STATIONS TWO AD BLUE FILLING STATIONS RUNNING in

Germany

ONE to be OPENED SHORTLY in France

UREA/AD BLUE in EUROPE 5 AD BLUE DISTRIBUTION 2 FILLING STATION and HARDWARE

Open/Closed system at home filling depot

Spill free nozzle

EURO REGULATION vs SCR 1 RESPONSIBILITY of the MEMBERS STATE

In the recitals of the comitology directive,

The commission recalls the responsibility of the member states:

to perform road side spot-checks for enforcing the proper operation of vehicles equipped with SCR

The commission requests the member states :

to ensure that urea will be available on a geographically

balanced basis

to make illegal to drive without urea or not to consume urea

EURO REGULATION vs SCR 2 ANTI TAMPERING 1 OVERALL

As from EURO 4, day 1, the following tampering scenarios must be detectable

lack of reagent in the urea tank

non appropriate reagent consumption

As from EURO 4 or at a later date must be also detected a

wrong reagent quality or a lack of NOx reduction

As from EURO 4 or at a later date

all the above will lead to a two-step power reduction

EURO REGULATION vs SCR 3 ANTI TAMPERING 2 LACK of UREA

The level of urea in the tank must be monitored.

The level of urea in the tank must be indicated to the driver.

A lack of urea in the tank shall lead to:

light on the OBD-indicator

activate an additional warning mode on the dash board

activate a reduction scheme in the engine performance

EURO REGULATION vs SCR 5 ANTI TAMPERING 3 UREA CONSUMPTION

The following parameters must be monitored:

The level of urea in the tank

The activity of the dosing system

The urea injection

The urea consumption must be recorded.

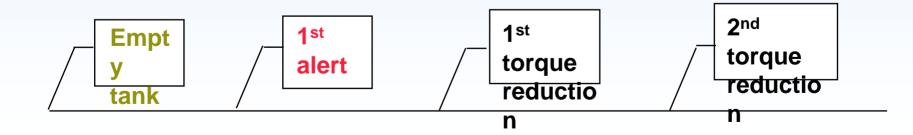
A lack of urea consumption is diagnosed in the case of a too high difference

(50%) with the average consumption of the previous days and leads to :

EURO REGULATION vs SCR 4 ANTI TAMPERING 4 UREA QUALITY

The urea quality must be monitored: a quality deviating from the one specified by the manufacturer must be considered as a failure by the OBD system, and shall lead to light on the OBD-indicator.

Alternatively NOx reduction could be monitored.


EURO REGULATION vs SCR 6 ANTI TAMPERING 5 REDUCTION of ENGINE TORQUE

2 steps reduction:

75% of the full load torque

60% of the full load torque

Torque reduction procedure to be considered for safety and environmental issues.

PERSPECTIVE 1 SIMPLIFIED ROUTES

PERSPECTIVE 2 KEY DRIVERS to the FUTURE

GLOBAL COST

PRODUCT, SERVICE, RELIABILITY/DURABILITY

SAVE OUR CUSTOMERS PROFITABILITY

by MANAGEMENT OF COMPLEXITY

FUEL ECONOMY and IN USE COST

SAVE DIESEL LOW CO 2 EMISSION POTENTIAL

REGULATIONS "AS USUAL"

BALANCE of CO 2/NO x EMISSIONS

THANKS FOR YOUR ATTENTION